
Object-oriented software engineering: conquering complex and changing systems, Bernd Bruegge,
Allen H. Dutoit, Prentice Hall, 2000, 0134897250, 9780134897257, 553 pages. Designed for
courses in Software Engineering, Software Development, or Object-Oriented Design & Analysis at
the Senior or Graduate level. This textbook explores both the theoretical foundations of software
engineering as well as the principles and practices of various object-oriented tools, processes, and
products. It emphasizes practical experience whereby participants can apply the techniques learned
in class by implementing a real-world software project..

DOWNLOAD HERE

Business Dynamics (With Cd) , Sterman, 2010, , 982 pages. .

Software engineering and environment an object-oriented perspective, Phillip C.-Y. Sheu, Nov 1,
1996, , 323 pages. Software Engineering and Environment examines the various aspects of
software development, describing a number of software life cycle models. Twelve in-depth chapters
discuss

Fundamentals of software engineering , Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, 1991,
Computers, 573 pages. M->CREATED.

Object-oriented Data Structures Using Java , Nell B. Dale, Daniel T. Joyce, Chip Weems, 2002,
Computers, 825 pages. This book teaches the classic data structures with an informal, yet rigorous,
approach; it includes the appropriate object-oriented concepts and makes use of the appropriate

Applied cryptography protocols, algorithms, and source code in C, Bruce Schneier, 2007, , 784
pages. About The Book: This new edition of the cryptography classic provides you with a
comprehensive survey of modern cryptography. The book details how programmers and electronic
....

Software requirements engineering , Richard H. Thayer, Sidney C. Bailin, Feb 27, 1997, Computers,
483 pages. This new edition describes current best practices in requirements engineering with a
focus primarily on software systems but also on systems that may contain other elements

Object-oriented software engineering , Steve Halladay, Michael Wiebel, 1993, Computers, 359
pages. Venturing beyond C++ programming, this text shows how to engineer software products
using object-oriented principles. It covers gathering requirements, specifying objects

Object-Oriented Analysis And Design With Applications, 3/E , Booch, Sep 1, 2009, , 724 pages. .

Software Engineering , Pfleeger, Sep 1, 2008, Computer science, 736 pages. .

Object Oriented Systems Analysis/Design , Simon Bennett, Steve McRobb, Ray Farmer, 2006, , 698
pages. The book provides a clear, practical framework for development that uses all the major

http://bit.ly/1j0ix5V

techniques from UML 2.0. It follows an iterative and incremental approach based on the

"This is a well-written book using an object-oriented approach to describe an in-depth methodology
for building software systems. Good examples are used throughout to illustrate concepts. The clear
and lucid flow of the authors' writing enhances and contributes even mare to the didactic aspects of
this book. — William Lively, Texas A&M University

"This is the best software engineering book that I have come across. I plan to use it at both the
undergraduate and graduate levels. The book has numerous advantages . . . a wealth of good
technical information, useful heuristics, and good advice. The book can be used effectively by both
university programmers and by software engineering professionals. — Martin Purvis, University
of Otago

The K2 towers at 8,611 meters in the Karakorum range of the western Himalayas. It is the second
highest peak of the world and is considered the most difficult 8000er to climb. An expedition to the
K2 typically lasts several months in the summer, when the weather is most favorable. Even in
summer, snow storms are frequent. An expedition requires thousands of pounds of equipment,
including climbing gear, severe weather protection gear, tents, food, communication equipment, and
pay and shoes for hundreds of porters. Planning such an expedition takes a significant amount of
time in the life of a climber and requires dozens of participants in supporting roles. Once on site,
many unexpected events, such as avalanches, porter strikes, or equipment failures, will force the
climbers to adapt, find new solutions, or retreat. The success rate for expeditions to the K2 is
currently less than 40%.

The United States National Airspace System (NAS) monitors and controls air traffic in the United
States. The NAS includes more than 18,300 airports, 21 air route traffic control centers, and over
460 control towers. This adds up to more than 34,000 pieces of equipment, including radars,
communication switches, radios, computer systems, and displays. The current infrastructure is aging
rapidly. The computers supporting the 21 air route traffic control centers, for example, are IBM 3083
mainframes that date back to the early 1980s. In 1996, the United States government initiated a
program to modernize the NAS infrastructure, including improvements such as satellite navigation,
digital controller/pilot communications, and a higher degree of automation in controlling the air
routes, the order in which aircraft land, and control of ground traffic as aircraft move from and to the
runways. Modernizing such a complex infrastructure, however, can only be done incrementally.
Consequently, while new components offering new functionality are introduced, older components
still need to be supported. For example, during the transition period, a controller will have to be able
to use both analog and digital voice channels to communicate with pilots. Finally, the modernization
of the NAS coincides with a dramatic increase in global air traffic, predicted to double within the next
10-15 years. The previous modernizing effort of the NAS, called the Advanced Automation System
(AAS), was suspended in 1994 because of software-related problems, after missing its initial
deadline by several years and exceeding its budget by several billions of dollars.

Both of the above examples discuss complex systems, where external conditions can trigger
unexpected changes. Complexity puts the problem beyond the control of any single individual.
Change forces participants to move away from well-known solutions and to invent new ones. In both
examples, several participants need to cooperate and develop new techniques to address these
challenges. Failure to do so results in the failure to reach the goal.

The application domain (mountain expedition planning, air traffic control, financial systems, word
processing) usually includes many concepts that software developers are not familiar with. The
solution domain (user interface toolkits, wireless communication, middleware, database
management systems, transaction processing systems, wearable computers, etc.) is often immature
and provides developers with many competing implementation technologies. Consequently, the
system and the development project are complex, involving many different components, tools,
methods, and people.

As developers learn more about the application domain from their users, they update the
requirements of the system. As developers learn more about emerging technologies or about the
limitations of current technologies, they adapt the system design and implementation. As quality
control finds defects in the system and users request new features, developers modify the system
and its associated work products, resulting in continuous change.

Complexity and change represent challenges that make it impossible for any single person to control
the system and its evolution. If controlled improperly, complexity and change defeat the solution
before its release, even if the goal is in sight. Too many mistakes in the interpretation of the
application domain make the solution useless for the users, forcing a retreat from the route or the
market. Immature or incompatible implementation technologies result in poor reliability and delays.
Failure to handle change introduces new defects in the system and degrades performance beyond
usability.

This book reflects more than 10 years of building systems and of teaching software engineering
project courses. We have observed that students are taught programming and software engineering
techniques in isolation, often using small problems as examples. As a result, they are able to solve
well-defined problems efficiently, but are overwhelmed by the complexity of their first real
development experience, when many different techniques and tools need to be used and different
people need to collaborate. Reacting to this state of affairs, the typical undergraduate curriculum
now often includes a software engineering project course, organized as a single development
project. The tools: UML, Java, and Design Patterns

We wrote this book with a project course in mind. This book can be used, however, in other
situations as well, such as short and intensive workshops or short-term R&D projects. We use
examples from real systems and examine the interaction between state-of-the art techniques, such
as UML (Unified Modeling Language), Java-based technologies, design patterns, design rationale,
configuration management, and quality control. Moreover, we discuss project management related
issues that are related to these techniques and their impact on complexity and change. The
principles

Problem solving. We believe that software engineering education must be based on problem
solving. Consequently, there are no right or wrong solutions, only solutions that are better or worse
relative to stated criteria. Although we survey existing solutions to real problems and encourage their
reuse, we also encourage criticism and the improvement of standard solutions.

Limited resources. If we have sufficient time and resources, we could perhaps build the ideal
system. There are several problems with such a situation. First, it is not realistic. Second, even if we
had sufficient resources, if the original problem rapidly changes during the development, we would
eventually deliver a system solving the wrong problem. As a result, we assume that our
problem-solving process is limited in terms of resources. Moreover, the acute awareness of scarce
resources encourages a component-based approach, reuse of knowledge, design, and code. In
other words, we support an engineering approach to software development.

Interdisciplinarity. Software engineering is an interdisciplinary field. It requires contributions from
areas spanning electrical and computer engineering, computer science, business administration,
graphic design, industrial design, architecture, theater, and writing. Software engineering is an
applied field. When trying to understand and model the application domain, developers interact
regularly with others, including users and clients, some of whom know little about software
development. This requires viewing and approaching the system from multiple perspectives and
terminologies.

Communication. Even if developers build software for developers only, they would still need to
communicate among themselves. As developers, we cannot afford the luxury of being able to
communicate only with our peers. We need to communicate alternatives, articulate solutions,
negotiate trade-offs, and review and criticize others' work. A large number of failures in software
engineering projects can be traced to the communication of inaccurate information or to missing

information. We must learn to communicate with all project participants, including, most importantly,
the client and the end users.

This book is based on object-oriented techniques applied to software engineering. It is neither a
general software engineering book that surveys all available methods nor a programming book
about algorithms and data structures. Instead, we focus on a limited set of techniques and explain
their application in a reasonably complex environment, such as a multiteam development project
that includes 20-60 participants. Consequently, this book also reflects our biases, our strengths, and
our weaknesses. We hope, nevertheless, that all readers will find something they can use. The book
is structured into 12 chapters organized into four parts, which can be taught as a semester-long
course.

In Chapter 1, Introduction to Software Engineering, we describe the difference between
programming and software engineering, the current challenges in our discipline, and basic
definitions of concepts we use throughout the book. In Chapter 2, Modeling with UML, we describe
the basic elements of a modeling language, UML (Unified Modeling Language), used in
object-oriented techniques. We present modeling as a technique for dealing with complexity. This
chapter teaches the reader how to read and understand UML diagrams. Subsequent chapters teach
the reader how to build UML diagrams to model various aspects of the system. We use UML
throughout the book to model a variety of artifacts, from software systems to processes and work
products. In Chapter 3, Project Communication, we discuss the single most critical activity that
developers perform. Developers and managers spend more than half of their time communicating
with others, either face-to-face or via E-mail, groupware, video conference, or written documents.
While modeling deals with complexity, communication deals with change. We describe the main
means of communications, their application, and discuss what constitutes effective communication.

In Chapter 4, Requirements Elicitation, and Chapter 5, Analysis, we describe the definition of the
system from the users' point of view. During requirements elicitation, developers determine the
functionality users need and a usable way of delivering it. During analysis, developers formalize this
knowledge and ensure its completeness and consistency. We focus on how UML is used to deal
with application domain complexity. In Chapter 6, System Design, we describe the definition of the
system from the developers' point of view. During this phase, developers define the architecture of
the system in terms of design goals and a subsystem decomposition. They address global issues,
such as the mapping of the system onto hardware, the storage of persistent data, and global control
flow. We focus on how developers can use design patterns, components, and LTML to deal with
solution domain complexity. In Chapter 7, Object Design, we describe the detailed modeling and
construction activities related to the solution domain. We refine the requirements and system models
and specify precisely the classes that constitute the system and define the boundary of existing
class libraries and frameworks. For the specification of class interfaces we use UML's Object
Constraint Language.

In Part III, Managing Change, we focus on methods and technologies that support the control,
assessment, and implementation of changes throughout the life cycle. In Chapter 8, Rationale
Management, we describe the capture of design decisions and their justifications. The models we
develop during requirements elicitation, analysis, and system design help us deal with complexity,
by providing us with different perspectives on what the system should be doing and how it should do
it. To be able to deal with change, we need also to know why the system is the way it is. Capturing
design decisions, the evaluated alternatives, and their argumentation enables us to access the
rationale of the system. In Chapter 9, Testing, we describe the validation of system behavior against
the system models. Testing detects faults in the system, including those introduced during changes
to the system or its requirements. Testing activities include unit testing, integration testing, and
system testing. We describe several testing techniques such as whitebox, blackbox, path testing,
state-based testing, and inspections. In Chapter 10, Software Configuration Management, we
describe techniques and tools for modeling the project history. Configuration management
complements rationale in helping us deal with change. Version management records the evolution
of the system. Release management ensures consistency and quality across the components of a
release. Change management ensures that modifications to the system are consistent with project

goals. In Chapter 11, Project Management, we describe techniques necessary for initiating a
software development project, tracking its progress, and dealing with risks and unplanned events.
We focus on organizations, roles, and management activities that allow a large number of
participants to collaborate and deliver a high-quality system within planned constraints.

In Part IV, Starting Over, we revisit the concepts we described in the previous chapters from a
process perspective. In Chapter 12, Software Life Cycle, we describe software life cycles, such as
Boehm's Spiral Model and the Unified Software Development Process, which provide an abstract
model of development activities. In this chapter, we also describe the Capability Maturity Model,
which is used for assessing the maturity of organizations. We conclude with two examples of
software life cycles, which can be applied in a class project.

The topics above are strongly interrelated. To emphasize their relationships, we selected an iterative
approach. Each chapter consists of five sections. In the first section, we introduce the issues
relevant to the topic with an illustrative example. In the second section, we describe briefly the
activities of the topic. In the third section, we explain the basic concepts of the topic with simple
examples. In the fourth section, we detail the technical activities with examples from real systems.
Finally, we describe management activities and discuss typical trade-offs. By repeating and
elaborating on the same concepts by using increasingly complex examples, we hope to provide the
reader with an operational knowledge of object-oriented software engineering. The courses

We wrote this book for a semester-long, software engineering project course for senior or graduate
students. We assume that students have experience with a programming language such as C, C++,
Ada, or Java. We expect that students have the necessary problem-solving skills to attack technical
problems, but we do not expect that they have been exposed to complex or changing situations
typical of system development. This book, however, can also be used for other types of courses,
such as short intensive professional courses.

Project and senior level courses. A project course should include all the chapters of the book,
roughly in the same order. An instructor may consider teaching early in the course introductory
project management concepts from Chapter 11, Project Management, such that students become
familiar with planning and status reporting.

Short technical course. This book can also be used for a short, intensive course geared towards
professionals. A technical course focusing on UML and object-oriented methods could use the
chapter sequence 1, 2, 4, 5, 6, 7, 8, 9, covering all development phases from requirements
elicitation to testing. An advanced course would also include Chapter 10, Software Configuration
Management.

Short management course. This book can also be used for a short intensive course geared towards
managers. A management course focusing on managerial aspects such as communication, risk
management, rationale, maturity models, and UML could use the chapter sequence 1, 2, 11, 3, 4, 8,
10, 12. --This text refers to an out of print or unavailable edition of this title.

But the book is sloppy in any area that requires precision. They make no distinction of the four kinds
of message sending in sequence diagrams. It is important for a UML user to differentiate
synchronous, asynchronous, return and flat arrows. Otherwise a diagram will have different
meaning. The authors use indiscriminately the notation of synchronous message when most of
messages in their diagrams should be asynchronous.

Though it is more prescriptive than the standard software engineering books such as the ones by
Pressman and Sommerville, I would NOT recommend its use as a textbook due to the many errors.
I found "Object-oriented Systems Analysis and Design" by Bennett, McRobb and Farmer a better
how-to book in software engineering.

Typically, this project is an upgrade of the previous class's project. Stop and imagine how realistic
this approach is -- modifying a system created by engineers who are no longer available for

interview, working with as many as 50 different people, working with designs that do not match the
code anymore, working with code of varying quality, etc.

Although this book comes from an academic background, I used it in a real client project in industry
for the first time. The book offers a rather complete overview of software engineering in general:
requirements engineering, analysis, system design, object design, implementation, testing. It also
includes specialities, for instance rationale management, project management and others. I agree
with a previous annotator who wrote that not all of the samples are 'perfectly helpful'. However,
some are and some are quite amusing, e.g., in the Design Rationale chapter.

This is NOT a book on Unified Modeling Language (UML). It's not a book on Object Constraint
Language (OCL). It's also not a book on Capability Maturity Models (CMM),
Class-Responsibilities-Collaborators (CRC) cards, Decision Representation Language (DRL),
Extreme Programming (XP), Gantt charts, Issue-Based Information Systems (IBIS), Joint Appication
Design (JAD), Key Process Areas (KPA), the Liskov Substitution Principle, Model-View-Controller
(MVC) architectural styles, Nonfunctional Requirements (NFR) Frameworks, Object Design
Documents (ODD), PERT charts, the Questions-Options-Criteria (QOC) model, Requirements
Analysis Documents (RAD), Royce's methodology, Software Configuration Management Plans
(SCMP), System Design Documents (SDD), Software Project Management Plans (SPMP), the
Unified Software Development Process, User Manuals, V-Models, Work Breakdown Structures
(WBS), or any of the myriad other tools introduced in the book.
http://eduln.org/332.pdf
http://eduln.org/566.pdf
http://eduln.org/1271.pdf
http://eduln.org/1100.pdf
http://eduln.org/127.pdf
http://eduln.org/1276.pdf
http://eduln.org/567.pdf
http://eduln.org/1023.pdf
http://eduln.org/1190.pdf
http://eduln.org/1421.pdf
http://eduln.org/1340.pdf
http://eduln.org/571.pdf
http://eduln.org/761.pdf
http://eduln.org/283.pdf

http://eduln.org/332.pdf
http://eduln.org/566.pdf
http://eduln.org/1271.pdf
http://eduln.org/1100.pdf
http://eduln.org/127.pdf
http://eduln.org/1276.pdf
http://eduln.org/567.pdf
http://eduln.org/1023.pdf
http://eduln.org/1190.pdf
http://eduln.org/1421.pdf
http://eduln.org/1340.pdf
http://eduln.org/571.pdf
http://eduln.org/761.pdf
http://eduln.org/283.pdf

